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Abstract 

 Software plays an important role in the advancement of science. Software developers, 

users, and funding agencies have deep interest in the use and impact of software on 

science. This study investigates the use and impact of software by examining how 

software mentioned and cited among 9,548 articles published in PLOS ONE in 12 defined 

disciplines. Our results demonstrate that software is widely used in scientific research and 

a substantial uncitedness of software exists across different disciplines. Findings also show 

that the practice of software citations varies noticeably at the discipline level and software 

that is free for academic use is more likely to receive citations than commercial software. 

 

Introduction 

Software is of vital importance to scientific research¾it is employed in a number of 

practices such as control processes, data analytics, and knowledge dissemination. 

Scientists believe that software plays a critical role in their research (Howison & Bullard, 

2016; Hannay et al., 2009) and consumes as much as 40% of their time in developing and 

using software (Prabhu et al., 2011; Hannay et al., 2009). They also hold the belief that 

sharing software benefits the scientific community and, accordingly, have made an effort 

to reduce the barriers of software use, evidenced by the popularity of free and open 

software (Pan et al., 2015). It is argued sometimes that academic reputation is a major 

incentive to many scientists who develop and share software (Trainer et al., 2013; Howison 

& Herbsleb, 2013).  

Although there is a consensus that software is useful to the scientific community, 
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software has long been considered as a supporting service instead of a formal research 

product (Howison & Herbsleb, 2014, p. 2). A number of studies have found that 

acknowledging the provenance of software is inconsistently practiced (Trainer, 

Chaihirunkarn, & Herbsleb, 2013; Howison & Bullard, 2016; Pan et al., 2015). Therefore, 

a clear tension exists: on the one hand, scientists put a lot of effort into developing software 

and their software benefits the scientific community; on the other hand, software is 

typically not credited in the same way as publications in the current scientific reward 

system¾as Poisot (2015) noted, “while there exists an incentive to write good papers, 

there is no clear incentive to write good software” (p. 159). 

Lately, scientists have gained awareness of this issue, recognizing that an impact 

assessment should take into considerations both publications and non-traditional research 

outputs such as software and data (Piwowar, 2013). Among these non-traditional research 

outputs, research data have garnered attention from academic and industry communities as 

researchers and practitioners probed into the workforce of data¾including data reuse 

(Chao, 2011; Rolland & Lee, 2013), data publishing (Candela, Castelli, Manghi, & Tani, 

2015), data sharing (Tenopir et al., 2011), data citation (Robinson-García, 

Jiménez-Contreras, & Torres-Salinas, 2015), and data evaluation (Piwowar & Chapman, 

2010).  

In contrast, the value of software has yet to be explored and recognized. Scientists 

have just started to understand the lifecycle of software and its potential implications to 

scientific research, having conversations in venues such as special issues on software 

attribution (Poisot, 2015; Segal & Morris, 2008) and workshops sponsored by the U.S. 

National Science Foundation (Katz et al., 2014; Katz et al., 2015; Stewart, Almes, & 

Wheeler, 2010). Regardless, many questions remain unanswered, particularly in reference 

to patterns of software use and citation across different disciplinary communication 

channels.  

Our previous study on software entity extraction in full texts (Pan et al., 2015) enables 

us to study the disciplinary characteristics of software use and citation. In our previous 

work, more than two thousand software entities were identified from articles published in 

PLOS ONE in 2014. In this study, we focus on studying how these software entities are 
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used and cited in a variety of disciplines. Citations in this article refer to formal citations 

associated with an entry in a references list. Specifically, we address the following 

questions: 

1. How much software is used in scientific literature across diverse disciplines?  

2. How much software is cited in scientific literature across diverse disciplines? 

What are the disciplinary differences of software use and citation? 

3. What types of software are more likely to receive citations and why? 

The answers to the above questions are valuable in two ways. First, they provide 

insights into the importance of software in science. Second, they help lay a foundation for 

designing hybrid metrics to assess the full-spectrum impact of software and help build a 

more inclusive scientific evaluation system that incorporates digital outputs.  

 

Literature Review 

While some scientists argue that software plays a secondary role in scientific research 

(Howison & Herbsleb, 2010), others hold a different view that software plays a central role, 

for instance, in fields such as bioinformatics (Huang et al., 2013). Nevertheless, there is 

almost universal agreement in the scientific community that software plays an important 

role and that software “can be a source of innovation and can enhance science” (Howison& 

Herbsleb, 2014, p. 2). Despite its value, software is typically uncounted or discounted in 

current research evaluations that prioritize traditional publications more than 

non-traditional research outputs (Hafer & Kirkpatrick, 2009). In recent years, we have 

witnessed that more non-traditional outputs such as software have been created as the end 

products of various scientific inquiries and they have been widely adopted, used, and 

reused in the scientific community (Pan, Yan, Wang, & Hua, 2015; Howison & Bullard, 

2016). A survey of the use of software and database has found that 97.7% of BMC 

Bioinformatics papers contained software/database (Duck et al., 2013). 

 Previous studies on software largely focused on investigating the motivations of 

software development and sharing (Crowston, Howison, & Wiggins, 2010). It is found that 

academic reputation and monetary rewards motivate scientists to make their software free 

for academic use (Hann, Roberts, & Slaughter, 2004; Poisot, 2015). There is a belief that 
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scientists participate in developing and sharing scientific software for extrinsic benefits 

such as earning citations and advancing careers (Roberts, Hann, & Slaughter, 2006; 

Howison & Herbsleb, 2011). Meanwhile, studies have demonstrated that intrinsic 

motivations, along with learning (Huang et al., 2013) and use value (Howison & Herbsleb, 

2013) can also become the drives to develop and share software (Lakhani & Wolf, 2003).  

In addition to these motivation studies, scientists have recently embarked on the issue 

of software use and impact. A study in 2013 has found that scientists tend to choose 

software that is widely used by others in their community and prefer software that is free 

for academic use (Huang et al., 2013). Studies on the scientific software ecosystem have 

suggested that the use of scientific software is influenced by its visibility, availability, 

sustainability, reproducibility, and citation (Howison and Herbsleb, 2014; Howison et al., 

2015; Huang et al., 2013). Studies also have suggested that software developers are 

interested to know the use and impact of their software because “software use matters to 

them for funding purposes” (Howison et al., 2015; Trainer, Chaihirunkarn, 

Kalyanasundaram, & Herbsleb, 2015, p. 428). 

Recent studies on data impact have led to the discussions on software citation and 

evaluation, as a parallel can be drawn between software and data in scientific literature 

(Piwowar, Carlson, & Vision, 2011; Howison & Bullard, 2016). It is suggested that the 

numbers of mentions and citations in literature can be used to measure the impact of 

software (Huang et al., 2013; Pan et al., 2015). Yet, it is argued that “the practices of 

citation to software vary considerably from field to field and appear to miss significant 

software” (Howison et al., 2015, p. 478). One study examining the use of software in 

scientific articles in biology has found that more than half of the software mentions did not 

include references (Howison & Bullard, 2016). Thus, it validates the need to use 

alternative metrics in addition to citations when assessing software impact, such as the 

numbers of downloads, registered users, subscribers, user reviews, and artifacts inserted in 

literature (Howison et al., 2015).  

Software users and developers yearn for information about the use and impact of 

software on science. Moreover, funding agencies also benefit from having access to 

software impact data (Piwowar, 2013). In this paper, we examine how software is used 
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across different disciplines and demonstrate software’s popularity and impact in scientific 

literature.  

 

Data and Methods 

All articles published in a multidisciplinary journal PLOS ONE in 2014 were 

downloaded for analysis. The access point for this data set is provided by the PubMed 

Central Open Access Subset (http://www.ncbi.nih.gov/pmc/tools/openftlist/) which is 

freely accessible to the public. Jsoup, a java HTML parser, was used to extract the text of 

papers from the HTML files (Jsoup). The methods/methodology sections of these articles 

were selected as the intermediate data set to learn software entities because our previous 

study found that most items of software were mentioned in these sections (Pan et al., 

2015). This data set, which contains 9,571 papers, was used as the input to extract 

software entities. An improved bootstrapping method proposed in our previous work (Pan 

et al., 2015) was used to learn software entities from the data set. This bootstrapping 

method is a weakly supervised method that required a small number of seed terms and an 

unlabeled text corpus as input. It began by generating candidate patterns using seed terms 

(e.g., BibExcel, LIBSVM, SPSS, and SAS). Then, candidate patterns were sorted and the 

top-ranked patterns were used to identify candidate entities. Next, candidate entities were 

scored and high scoring entities were selected as learned entities. After that, the learned 

entities were used to generate patterns that can extract more entities in an iterative way. 

To improve the method performance, we employed a pattern accuracy measure and 

multiple entity features to filter unlabeled entities. A random sample of 386 papers was 

selected as the test set and the 470 manually labeled software entities in this set were 

considered as the gold standard for evaluating the performance of the bootstrapping 

method. The precision and recall scores of the method by the end of the iteratively 

learning process were 0.94 and 0.42 respectively. Overall, this method had the highest F1 

score of 0.58 and outperformed the baseline methods. Then, this method was used to 

extract software entities from the 9,571 papers and 2,342 unique software entities were 

learned from this data set. 

Papers without a pre-assigned PLOS ONE category were discarded, resulting in 
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9,548 papers. We identified 2,334 unique software entities from these papers. Table 1 

reports the distribution of papers in each of the 24 PLOS ONE categories. As shown in 

Table 1, there are substantial differences in the number of papers among the categories (a 

possible typo in the downloaded file was found: the last category “Biology and life 

gsciences” might be “Biology and life sciences”). 

  

TABLE 1. The distribution of papers across disciplines. 

Rank Discipline Papers Rank Discipline Papers 

1 Biology and life sciences 6288 13 Mathematics 157 

2 Medicine and health sciences 4569 14 Agriculture 138 

3 Biology 1675 15 Chemistry 134 

4 Research and analysis methods 1653 16 Computer science 109 

5 Medicine 1346 17 Engineering 107 

6 Physical sciences 879 18 Veterinary science 90 

7 Ecology and environmental sciences 645 19 Physics 84 

8 Social sciences 519 20 Science policy 80 

9 Computer and information sciences 445 21 People and places 68 

10 Earth sciences 423 22 Materials science 42 

11 Engineering and technology 361 23 Astronomical sciences  1 

12 Social and behavioral sciences 199 24 Biology and life gsciences 1 

 

Considering that the 24 categories provided by PLOS ONE still have room for 

refinement, we further grouped them into 12 disciplines based on disciplinary similarities. 

Table 2 summarizes the information of the new 12 collapsed disciplines. This refinement 

helps us conduct the analysis and draw concise conclusions.   

 

TABLE 2. Summary of the 12 new disciplinary categories. 

Collapsed category Original categories No. of papers 

Biology Biology; Biology and life sciences;  

Biology and life gsciences; Veterinary science 

7,971 
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Medicine and health sciences Medicine and health sciences; Medicine 5,915 

Research and analysis methods Research and analysis methods 1,653 

Physics Physics; Astronomical sciences; Physical sciences 964 

Social sciences Social sciences; Social and behavioral sciences;  

People and places; Science policy 

785 

 

Ecology and environmental sciences Ecology and environmental sciences 645 

Computer and information sciences Computer science; Computer and information sciences 554 

Engineering Engineering and technology;  

Engineering; Materials science 

   496 

Earth sciences Earth sciences 423 

Mathematics Mathematics 157 

Agriculture Agriculture 138 

Chemistry Chemistry 134 

 

In this article, we count the number of mentions and number of citations to assess the 

impact of software on science. A citation in PLOS ONE is represented as square brackets 

with an integer that is reference ID, such as “[1]”. For example, in the sentence “In this 

paper, Webometric Analyst 2.0 and Weka 3.0 were used to extract and analyze the 

statistical data of each paper [1] [2]”, the number of citations of “Webometric Analyst” 

and that of “Weka” are one, because a citation occurred after each software. A random 

sample of 100 sentences, which contain one or more software entities and at least a 

citation occurring after the software entities, was used to test the accuracy of the 

assumption. We manually checked if a citation occurred in the substring that starting 

from a software entity to the end of the sentence is the citation to the software¾this has 

been true for all the 100 sentences.  

We use the sentence and article as the counting unit separately. The following two 

formulas are used to calculate the numbers of mentions and citations when we use the 

sentence as the counting unit. The number of mentions of 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒!in a discipline is 

calculated as  
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𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠"#$%&'()! =	. . 𝑀𝑆𝑐𝑜𝑟𝑒(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒!)
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where n is the number of articles in a discipline and 𝑚. is the number of sentences in 

article p. If a sentence contains 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒!, 𝑀𝑆𝑐𝑜𝑟𝑒(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒!) is 1; otherwise, it 

equals 0. Similarly, the number of citations is calculated using the following formula: 

𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠"#$%&'()! =. . 𝐶𝑆𝑐𝑜𝑟𝑒(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒!)
*"

"+,

-

.+,
 

We made an assumption that if a sentence contains 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒! and there is a citation in 

the substring that starting from 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒!  to the end of this sentence, 

𝐶𝑆𝑐𝑜𝑟𝑒(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒!) equals 1 and 0 otherwise. That is to say, for each software entity 

mentioned in an article, we counted the number of sentences that mentioned it. Then, we 

counted the number of sentences as the number of software mentions of this article. 

Finally, we aggregated the number of software mentions of each article belonging to a 

discipline as the number of software mentions of this discipline. For each mention we 

also assessed whether there is a citation, and again, we aggregated citations at the article 

and discipline level as the number of software citations. 

 Additionally, we also used the article as the counting unit: if a software entity occurs 

in an article, no matter the number of occurrences, its number of mentions is one; 

otherwise, its number is zero. When we counted the number of citations of a software 

entity, all sentences that mentioned the software in an article will be assessed whether 

there is a citation: if there is a citation, no matter the number of occurrences, its number 

of citations is one. Then, we aggregated the mention and citation numbers at the 

discipline level. 
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Fig. 1. An example of how we count the numbers of software mentions and citations 

A program was written to count the number of mentions and citations for every 

learned software entity. This program matched 2,342 software entities from the data set. 

Some constrains were put on the matching process to improve the accuracy of counting 

the number of mentions and citations of software entities. When a learned software entity 

contains capital letters, the matched term should contain at least one uppercase letter or 

be in certain context that contains positive trigger words (i.e., package, program, software, 

tool, toolbox, and toolkit) or version numbers. If a learned software entity does not 

contain capital letters, the matched term is not required to contain capital letters. 

It is worth noting that the unit of analysis is at the sentence level and one entity’s 

multiple occurrences within a sentence are counted only once. For instance, for the 

sentence “We used the SPSS (SPSS for Windows, Version 18.0, Chicago, IL, USA) to 

analyze the dataset”, the number of mentions is one and the number of citations is zero. 

In addition, for simplicity, version information of software entities is ignored. For 

example, SAS 9.2 and SAS 9.3 are consolidated as SAS. Variants of a software entity are 

also consolidated. For example, ImageJ and Image J are consolidated as ImageJ.  

Three sample sets are used to explore what types of software are more likely to 

receive citations. First, we take a random sample of 30 software entities that did not 
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receive any formal citations and manually check whether these software entities are 

commercial software. Second, top 10 most frequently mentioned software entities in each 

discipline are selected as a sample set to test whether software that is free for academic 

use is more likely to receive citations. These software entities are classified into two 

groups based on whether they are commercial and the differences of software uncitedness 

(the ratio of the number of software mentions minus the number of software citations to 

the number of software mentions) for the two groups are assessed using IBM SPSS 

statistics (SPSS, version 20; IBM Corp., Armonk, NY). Third, top 10 most highly cited 

software entities of every discipline are selected and classified into two groups based on 

whether they are commercial. The software entities of noncommercial group are divided 

into two smaller groups based on whether the developers of these software entities 

request users to make a citation to their software or related publication. The average of 

software uncitedness of each group is calculated and compared with that of other groups. 

 

Results  

 In the first subsection, for each of the 12 disciplines, we present results on (1) the 

distribution of items of software, (2) software use and citation, and (3) software 

uncitedness. In the second subsection, we explore what types of software are more likely 

to receive citations using top mentioned and cited software in each discipline. 

Disciplinary characteristics of software use and citation 

 Figure 2 shows the distribution of the 2,334 software entities across the 12 

disciplines. The 361 (15.47%) software entities are used in one field; 683 (29.26%) are 

used in two fields and 474 (20.31%) are used in three fields. Twelve pieces of software 

(i.e., ArcGIS, ClustalW, Cluster X, ESTIMATES, ImageJ, JMP, MATLAB, Microsoft 

Access, Microsoft Excel, SAM, SAS, SPSS) are used in all 12 disciplines. 
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Fig. 2. The number of items of software vs. the number of disciplines 

 

 

Among the 9,548 papers, 7,602 papers (79.62%) mentioned software. Table 3 reports 

the distribution of software entities across disciplines.  

 

TABLE 3. The distribution of items of software across disciplines (disciplines ordered by 

the percentage of papers mentioned software). 

Disciplines Papers Papers that  

mentioned software 

Percentage of papers  

mentioned software 

Agriculture 138 118 86% 

Medicine and health sciences 5,915 4,795 81% 

Biology 7,971 6,400 80% 

Research and analysis methods 1,653 1,318 80% 

Ecology and environmental sciences 645 474 73% 

Chemistry 134 98 73% 
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Engineering 496 351 71% 

Physics 964 676 70% 

Earth sciences 423 285 67% 

Social sciences 785 494 63% 

Computer and information sciences 554 342 62% 

Mathematics 157 96 61% 

 

A disciplinary difference in the distribution of software is found: while 86% of the 

agriculture articles contained software, 61% of articles in mathematics contained 

software. It seems that software is more widely used in some disciplines (e.g., Agriculture, 

Medicine and health sciences, and Biology) than the others (e.g., Mathematics, Computer 

and information sciences, and Social sciences). A previous study found that 65% of the 

90 sampled biology papers had software mentions (Howison & Bullard, 2016), while our 

study shows that 80% of biology articles mentioned software entities.  

The 2,334 software entities are mentioned in the 7,602 papers and they are in total 

mentioned 25,860 times and cited 7,381 times. On average, an article mentioned software 

3.40 times and cited software 0.97 times. The numbers of software mentions of each 

discipline using the sentence as counting unit are shown in Table 4. It is worth noting that 

papers with no software mentions are ignored when we calculated the mentions per 

article of each discipline. 

 

TABLE 4. The mention of software in the scientific lecture across disciplines using the 

sentence as counting unit (disciplines ordered by number of mentions). 

Disciplines         Papers Total 

mentions 

Mean 

mentions 

Median 

mentions 

Mode 

mentions 

Biology 6,400 23,392 3.66 2 1 

Medicine and health sciences 4,795 13,268 2.77 2 1 

Research and analysis methods 1,318 3,951 3.00 2 1 

Physics 676 2,086 3.09 2 1 

Ecology and environmental sciences 474 1,928 4.07 2 1 
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Computer and information sciences 342 1,425 4.17 3 1 

Social sciences 494 1,268 2.57 2 1 

Engineering 351 1,089 3.10 2 1 

Earth sciences 285 909 3.19 2 1 

Agriculture 118 565 4.79 3 1 

Chemistry 98 346 3.53 2 1 

Mathematics 96 274 2.85 2 1 

     Note: Papers indicates the number of papers that mentioned software; Mean mentions = Total mentions/Papers. 

  

As shown in Table 4, the mean software mentions varies from one discipline to 

another ranging from 2.57 (Social sciences) to 4.79 (Agriculture). Ten out of 12 

disciplines have a median of 2. Only Agriculture and Computer and information sciences 

have a higher median of 3. Before we conducted pairwise comparison of disciplines for 

software mentions, papers belonging to two disciplines are removed from the paper list of 

each discipline to ensure accuracy. Because of the non-normal distribution of these 

disciplines based on software mentions, a series of Mann-Whitney U-tests are employed 

to identify which disciplines mentioned software significantly different from the others 

(Table 5).  

 

TABLE 5. Mann-Whitney U-tests for comparison of disciplinary differences in software mentions. 

Discipline Phy Che Bio Soc Med Com Mat Eng Ear Eco Res 

Agr 0** 0** 0.415 0** 0** 0** 0** 0** 0** 0** 0** 

Phy  0.797 0** 0** 0.008** 0.004** 0.001** 0.189 0.012* 0.203 0.050* 

Che   0.003** 0** 0.237 0.001** 0** 0.004** 0.002** 0.360 0.251 

Bio    0** 0** 0** 0** 0** 0** 0.126 0** 

Soc     0** 0.174 0.662 0.004** 0.041* 0** 0** 

Med      0** 0** 0** 0** 0.101 0.395 

Com       0.08 0.967 0.265 0.062 0.008** 

Mat        0.023* 0.360 0.001** 0** 

Eng         0.005** 0.679 0.799 
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Ear          0.002** 0.066 

Eco           0.008** 

    Note. *Singificant at p = 0.05; **significant at p = 0.01; p value that is displayed in bold indicates the discipline in column is 

lower than discipline in row (e.g., the p value in the 2th row and 2th column that is displayed in bold means that physics is lower than 

agriculture in the number of software mentions). 

 

Table 5 shows that agriculture significantly differs from the other disciplines (with 

the exception of biology) in software mentions. Significant differences are also found 

between biology and the other disciplines (with the exception of agriculture and ecology 

and environmental sciences) in terms of the number of software mentions. Scientists in 

agriculture and biology are more likely to mention software in their articles, while 

scholars in social sciences and mathematics are less likely to do so.  

Table 6 shows the number of software mentions and citations of each discipline using 

articles as the counting unit. The modes of software mentions and citations of all the 

disciplines are one. A widespread uncitedness is found in our data set; only between 22% 

(Medicine and health sciences) and 54% (Ecology and environmental sciences) of the 

software mentions included references. In biology, 66% of software mentions did not 

receive any formal citations. In contrast to Howison & Bullard’s (Howison & Bullard, 

2016) finding (which reported an uncitedness of 56%), our uncitedness is higher. This 

might be explained by that 24% of the journals that Howison and Bullard used in their 

research had explicit policies on how to cite software but PLOS ONE did not have that in 

2014.  

 

TABLE 6. The mention and citation of software in the scientific lecture across disciplines 

using the article as counting unit (disciplines ordered by number of mentions). 

Disciplines       Papers 

 

Total 

mentions 

Total 

citations 

Mean(Median) 

mentions 

Mean(Median) 

citations 

Uncitedness 

Biology 6,400 18,257 6,285 2.85 (2) 0.98 (2) 0.66 

Medicine and health sciences 4,795 10,842 2,364 2.26 (2) 0.49 (1) 0.78 

Research and analysis methods 1,318 3,125 784 2.37 (2) 0.59 (1) 0.75 
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Physics 676 1,569 534 2.32 (2) 0.79 (1) 0.66 

Ecology and environmental sciences 474 1,425 771 3.01 (2) 1.63 (2) 0.46 

Social sciences 494 963 277 1.95 (1) 0.56 (1) 0.71 

Computer and information sciences 342 888 437 2.60 (2) 1.28 (1) 0.51 

Engineering 351 776 219 2.21 (2) 0.62 (1) 0.72 

Earth sciences 285 677 299 2.38 (2) 1.05 (1) 0.56 

Agriculture 118 440 192 3.73 (2) 1.63 (3) 0.56 

Chemistry 98 254 71 2.59 (2) 0.72 (1) 0.72 

Mathematics 96 189 61 1.97 (2) 0.64 (1) 0.68 

Note: Papers indicates the number of papers that mentioned software; Mean mentions = Total mentions/Papers; Mean citations = total 

citations/Papers; Uncitedness = (Mean mentions – Mean citations)/Mean mentions. 

A series of Mann-Whitney U tests are used to assess whether there are differences 

between disciplines in citing software. Scientists in ecology and environmental sciences, 

and computer and information sciences are more likely to cite software when they 

mention software in their articles, while scientists in medicine and health sciences and 

research and analysis methods are less likely to make a formal citation for software that 

they mentioned in their articles 

 

TABLE 7. Mann-Whitney U-tests for comparison of disciplinary differences in uncitedness. 

Discipline Phy Che Bio Soc Med Com Mat Eng Ear Eco Res 

Agr 0.112 0.038* 0.453 0.025* 0** 0.049* 0.339 0.023* 0.170 0.002** 0** 

Phy  0.211 0.640 0.327 0** 0** 0.560 0.353 0** 0** 0** 

Che   0.376 0.776 0.005** 0** 0.408 0.709 0.002** 0** 0.127 

Bio    0.075 0** 0.471 0.497 0.099 0.910 0.159 0** 

Soc     0** 0** 0.988 0.727 0** 0** 0** 

Med      0** 0** 0** 0** 0** 0** 

Com       0.004** 0** 0.416 0.129 0** 

Mat        0.472 0.003** 0** 0.010** 

Eng         0** 0** 0.007** 

Ear          0.003** 0** 
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Eco           0** 

    Note. *Singificant at p = 0.05; **significant at p = 0.01; p value that is displayed in bold indicates the discipline in column is 

lower than discipline in row. 

 

Figure 3 shows the software mention ratio (mean mentions per article) and citation 

ratio (mean citations per articles) of each discipline using the article as counting unit.  

 

 

Fig. 3. The mean mention ratio and mean citation ratio of the 12 disciplines using the 

article as counting unit. 

 

The 12 disciplines were separately sorted in descending order based on the two ratios. 

The top six disciplines with the highest software mention ratio and the bottom six 

disciplines were classified into the high mention ratio group and low mention ratio group, 
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respectively. Similarly, the top and bottom six disciplines based on mean citation ratio 

were separately classified into the high citation ratio group and low citation ratio group. 

The 12 disciplines were assigned into four groups:  

• high mention ratio and high citation ratio: Agriculture, Biology, Ecology and 

environmental sciences, Computer and information sciences, and Earth sciences; 

• high mention ratio and low citation ratio: Chemistry;  

• low mention ratio and high citation ratio: Physics; and 

• low mention ratio and low citation ratio: Mathematics, Engineering, Research and 

analysis methods, Social sciences, and Medicine and health sciences.  

Table 8 shows the numbers of software entities that are mentioned and cited in each 

field. Percentages of software entities that received no citations in each discipline are also 

calculated. This metric shows that software citation is practiced to a greater extent in fields 

such as environmental sciences, computer and information sciences, and earth sciences. On 

the other hand, more than 60% of the mentioned software received no citation in chemistry. 

Our results demonstrate the need to take into considerations the number of software 

mentions in full texts when assessing the impact of software on science. 

 

TABLE 8.  The number of software entities in each discipline (disciplines ordered by 

the percentage of uncited software entities). 

Discipline 

Mentioned  

software entities 

Cited 

software entities 

Percentage of uncited 

software entities 

Chemistry 165 55 67% 

Mathematics 119 53 55% 

Engineering 358 160 55% 

Research and analysis methods 876 400 54% 

Social sciences 313 147 53% 

Medicine and health sciences 1611 792 51% 

Physics 599 308 49% 

Agriculture 257 136 47% 

Biology 2251 1317 41% 
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Computer and information sciences 436 276 37% 

Earth sciences 289 186 36% 

Ecology and environmental sciences 480 314 35% 

 

Characters of software that is more likely to receive citations 

 We randomly selected 30 software entities that were never cited in the reference list 

to assess whether they are commercial. After manually checked all the 30 unique 

software entities, we found that 18 (60%) software entities were commercial and 12 (40%) 

were free for academic use. It seems reasonable that commercial software entities are less 

likely to receive citations because they usually have no citation targets like publications. 

To demonstrate this assumption, the top 10 most frequently mentioned software entities 

in each discipline are selected as a sample set. Table 9 lists these software entities and 

their numbers of mentions. Among the 44 unique software entities in Table 9, 26 items of 

software (59%) are free for academic use. We grouped the 44 software entities into two 

classes based on whether they are commercial. Then, we counted the uncitedness of each 

software entities for the two classes. Because of the uncitedness distribution is skewed, 

the Mann-Whitney U test is employed to assess the difference between the two groups for 

uncitedness. Commercial software entities have a significantly greater uncitedness than 

those that are free for academic use (two tailed Mann-Whitney U test: p < 0.05). It means 

that commercial software is less likely to receive citation than software that is free for 

academic use. We also found that a few statistical software (e.g. SPSS, SAS) and image 

processing software (e.g. ImageJ) are widely used across several fields because of their 

marked applicability. For each discipline, more than three out of the top 10 most 

frequently mentioned software entities are free for academic use. Our results show the 

popularity of free software in different disciplines. 

 

TABLE 9. Top 10 most frequently mentioned software in each discipline using the 

sentences as the counting unit 

Discipline Top 10 most frequently mentioned software (the number of mentions) 

Agriculture SPSS (24); MEGA (15); BLAST (14); JMP (14); SAS (13);  
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STRUCTURE (10); BLASTX (9); RDP (9); PRIMER (8); AxioVision (8) 

Biology SPSS (1330); ImageJ (1011); SAS (431); MATLAB (417); BLAST (398);  

MEGA (356); EXCEL (344); Stata (305); FlowJo (258); PRISM (242) 

Chemistry SPSS (19); SigmaPlot (10); ImageJ (10); SAS (9); AMBER (9);  

MOE (8); ENM (8); JMP (7); EXCEL (7); GROMACS (7) 

Computer and information sciences MATLAB (77); SPM (30); Pfam (29); SPSS (29); PSI-BLAST (22);  

Weka (22); GSEA (21); BLAST (18); ArcGIS (18); SAS (17) 

Earth sciences SPSS (55); ArcGIS (52); SAS (30); Mothur (27); MEGA (20);  

ImageJ (18); QIIME (17); MaxEnt (17); EXCEL (16); MATLAB (15)  

Ecology and environmental sciences SPSS (80); ArcGIS (66); SAS (52); VEGAN (44); QIIME (43);  

MEGA (40); BLAST (39); ImageJ (36); ARLEQUIN (35); Mothur (32) 

Engineering and technology MATLAB (82); SPSS (61); ImageJ (57); SPM (34); SAS (32);  

FSL (19); SVS (18); GSEA (17); EXCEL (16); fastICA (14)  

Mathematics SAS (18); SPM (15); SPSS (15); MATLAB (15); Stata (15);  

Pfam (11); PLS (7); Globaltest (7); STAR (6); SAM (6) 

Medicine and health sciences SPSS (1461); ImageJ (644); Stata (553); SAS (448); MATLAB (237);  

EXCEL (230); FlowJo (195); PRISM (186); SPM (183); Adobe Photoshop (139) 

Physics SPSS (107); MATLAB (107); Stata (85); ImageJ (74); SAS (41);  

EXCEL (39); SPM (31); FSL (19); REVIEW MANAGER (19); BLAST (18) 

Research and analysis methods SPSS (321); ImageJ (216); Stata (159); MATLAB (127); SAS (97); EXCEL (88);  

Adobe Photoshop (54); PRISM (49); Ingenuity Pathway Analysis (47); BLAST (46) 

Social sciences SPSS (144); SPM (91); Stata (83); MATLAB (68); SAS (46);  

EXCEL (26); Adobe Photoshop (26); E-Prime (25); Talairach (19); SAM (18) 

Note: Software that is free for academic use is displayed in bold. 

 

 Table 10 shows the top 10 most highly cited software of each discipline. There are 62 

unique software entities in Table 10 and 50 (81%) are free for academic use. Free 

software is more likely to receive citations, which may be explained by that developers of 

free software typically request users to make a citation to their software or citable 

publications. To further investigate this phenomenon, we manually checked information 
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for these highly cited software entities. We find that developers of 30 pieces of software 

(60%) provided information on how to cite their software in their websites. Our results 

suggest that scientists expect a proper acknowledgment of their work―be the 

publications or digital outputs―and thusly have a keen interest in the impact of their 

software, which in turn provides evidence for the value of their work in the scientific 

community. Moreover, the 62 unique software entities are classified into three groups: the 

first group contains the 12 pieces of commercial software; the second group contains the 

30 pieces of software whose developers provided information on how to cite their 

software in their websites; the third group contains the remained 20 pieces of software. 

We count the average uncitnedness for the three groups: the first group is 0.66, the second 

is 0.47, and the third is 0.36. This might be explained by software that is free for 

academic use usually has related publications and its developers are more likely to tell the 

users how to cite the software. That means providing citation target and the information 

about how to cite the software might improve the practice of software citations. 

 

TABLE 10. Top 10 most highly cited software of every discipline using the sentences as 

the counting unit 

Discipline Top 10 most highly cited software (number of mentions) 

Agriculture MEGA (9); BLAST (6); Mothur (5); STRUCTURE (5); PHYLIP (5);  

RDP (4); ARLEQUIN (4); Blast2GO (3); Pfam (3); QIIME (3)  

Biology MEGA (233); ImageJ (115); BLAST (106); MUSCLE (96); Clustal W (94);  

ARLEQUIN (81); MrBayes (75); BioEdit (68); STRUCTURE (66); Bowtie (62) 

Chemistry Modeller (5); AMBER (5); REFMAC (4); MOE (4); PHENIX (3);  

PyMOL (2); Mothur (2); HKL-2000 (2); PHASER (2); CO2SYS (2)  

Computer and information sciences PSI-BLAST (10); MATLAB (9); SPM (8); Weka (8); GROMACS (7);  

AMBER (7); LIBSVM (6); SAM (6); BLAST (6); MaxEnt (6) 

Earth sciences MEGA (15); MaxEnt (14); ArcGIS (14); Mothur (13); VEGAN (9);  

QIIME (7); Random Forests (7); PAST (6); TNT (5); PRIMER (5) 

Ecology and environmental sciences VEGAN (32); MEGA (31); ARLEQUIN (25); Mothur (22); MaxEnt (20);  

STRUCTURE (17); ArcGIS (17); QIIME (15); MrBayes (15); RDP (15) 
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Engineering and technology SPM (11); ImageJ (10); MATLAB (8); FSL (8); SVS (5);  

MEGA (5); Refmac (4); RDP (4); ASA (4); Mothur (3) 

Mathematics SPM (7); STAR (3); PSI-BLAST (3); TAC (3); EMBOSS (2); 

SAM (2); MATLAB (2); Globaltest (2); SPINE-X (2); MaxEnt (2) 

Medicine and health sciences ImageJ (60); Stata (53); MEGA (52); SPM (42); PLINK (35);  

MATLAB (34); SPSS (30); FSL (29); SAS (28); Haploview (27) 

Physics VMD (15); MATLAB (14); AMBER (13); Refmac (12); ImageJ (11);  

FSL (11); Stata (10); SPM (10); PHENIX (9); CHARMM (9) 

Research and analysis methods ImageJ (30); Stata (23); MATLAB (18); BWA (15); TopHat (13);  

BLAST (11); MEGA (10); MUSCLE (10); SAMtools (10); Cufflinks (10) 

Social sciences SPM (18); Stata (18); MATLAB (16); EEGLAB (8); SAM (8);  

SPSS (7); Talairach (6); FreeSufer (5); FSL (5); REST (4) 

Note: Software that is free for academic use is marked in bold; Software, whose 

developers mentioned how to cite their software, is marked in italics. 

 

Discussions and conclusions 

 In this article, we analyzed the use and impact of software in scientific literature 

across a variety of disciplines. We classified our data set of 9,548 articles published in 

PLOS ONE in 2014 into 12 disciplines. A bootstrapping method proposed in our previous 

work (Pan et al., 2015) was used to extracted software entities from the data set and 2,334 

software entities has been learned. We examined how these software entities are used in 

the 12 disciplines through metrics that include the number of mentions and the number of 

citations. 

The distribution of software entities across diverse disciplines provides evidence that 

software is widely used across different scientific disciplines represented in our data set. 

The 2,334 items of software were mentioned 25,860 times across the 12 disciplines. We 

found that up to 80% of the 9,548 articles contained software mentions and more than 60% 

of the articles in each field include at least one software mention. More data sources are 

needed to examine the use of scientific software to generalize our findings. Disciplinary 

differences in the distribution of software in scientific articles were also found. More than 
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80% of the articles in agriculture and medicine and health sciences contained software 

mentions, while only about 60% of the papers in mathematics, computer and information 

science, and social science contained software mentions. These findings answered the 

first research question on how much software is used across different scientific 

disciplines.  

We counted the numbers of software mentions and citations in full texts using both 

sentences and article counting units for each discipline. A series of Mann-Whitney 

U-tests were used to assess the disciplinary differences for the number of software 

mentions and uncitedness. Evidence revealed disciplinary differences in the number of 

software mentions: Scientists in agriculture and biology are more likely to mention 

software, while scholars in social sciences and mathematics are less likely to do so. 

Disciplinary differences also existed in software citations: software citation is more 

consistently practiced in fields such as environmental sciences and computer and 

information sciences. In addition, the results showed that more than 30% of mentioned 

software received no citation in each discipline. These findings suggested that the number 

of software mentions in full texts should be taken into account when assessing the impact 

of software on science. These findings addressed the second research question on how 

much software is cited in scientific literature across diverse disciplines. 

 Last, the top 10 most mentioned and cited items of software in each discipline were 

identified to explore what types of software are more likely to receive citations. A 

statistically significant difference in the uncitedness between commercial software and 

noncommercial software was found. Software that is free for academic use was more 

likely to receive citations. We also found that the average uncitedness of software that 

was provided with information on how cite the software in the websites was 0.36, much 

lower than that of commercial software and noncommercial software without such 

citation guide information. These findings suggested that providing software citation 

targets and citation approaches can improve the practice of software citation. These 

findings address the third research question. In addition, this study also found that 60% of 

the 50 highly cited free items of software were provided with information on how to cite 

the software in their websites. It indicates that scientists who developed the software have 
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a deep interest in the popularity and impact of their products. This finding, in turn, 

substantiates the need to build a more inclusive scientific evaluation system that 

incorporates both publications and digital outputs.  

 One limitation of this study is that PLOS ONE is selected as the only data source. 

The mentions and uncitedness of software revealed in PLOS ONE are likely to be 

different from those of other journals, which has a higher or lower journal impact factor. 

A study of the use of software in biology has found that journals with higher journal 

impact factors are more likely to mention software and cite software formally (Howison 

& Bullard, 2016). There also might be differences in software citations between the 

journals that make a requirement of specific forms of software citations and PLOS ONE 

which did not make such requirement until 2015. Our future work includes using more 

data sources to demonstrate the findings of this study. Another future research direction is 

to exploring why scientists cite some software entities but do not cite the others. 
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